TOWARDS A MORSE THEORY FOR RANDOM DYNAMICAL SYSTEMS
نویسندگان
چکیده
منابع مشابه
Novikov - Morse Theory for Dynamical Systems HuiJun
The present paper contains an interpretation and generalization of Novikov’s theory for Morse type inequalities for closed 1-forms in terms of concepts from Conley’s theory for dynamical systems. We introduce the concept of a flow carrying a cocycle α, (generalized) α-flow for short, where α is a cocycle in bounded Alexander-Spanier cohomology theory. Gradient-like flows can then be characteriz...
متن کاملTowards Morse Theory for Point Cloud Data
Morse theory provides a powerful framework to study the topology of a manifold from a function de ned on it, but discrete constructions have remained elusive due to the di culty of translating smooth concepts to the discrete setting. Consider the problem of approximating the Morse-Smale (MS) complex of a Morse function from a point cloud and an associated nearest neighbor graph (NNG). While fol...
متن کاملChemical organization theory: towards a theory of constructive dynamical systems
Complex dynamical networks consisting of many components that interact and produce each other are difficult to understand, especially, when new components may appear. In this paper we outline a theory to deal with such systems. The theory consists of two parts. The first part introduces the concept of a chemical organization as a closed and mass-maintaining set of components. This concept allow...
متن کاملTowards Theory of Piecewise Linear Dynamical Systems ⋆
In this paper, we consider a planar dynamical system with a piecewise linear function containing an arbitrary number (but finite) of dropping sections and approximating some continuous nonlinear function. Studying all possible local and global bifurcations of its limit cycles, we prove that such a piecewise linear dynamical system with k dropping sections and 2k + 1 singular points can have at ...
متن کاملobservational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastics and Dynamics
سال: 2004
ISSN: 0219-4937,1793-6799
DOI: 10.1142/s0219493704001073